METHODS

1. SAMPLING

a) Engine
 Type of engine: diesel Zetor 1505, turbocharged, 4.16 liter, 90kW
 Fuels: on-road diesel (EN 590), 100% biodiesel (FAME)
 Operating modes:
 - engine coupled to dynamometer and operated at steady-state conditions selected to represent different phases of engine operation during the transit traffic congestion:
 - 100 rpm above idle, 2% load (870 rpm, 10 Nm) - corresponds to low-speed "creep"
 - intermediate rpm, 30% load (1500 rpm, 150 Nm) - corresponds to "highway cruise"
 - intermediate rpm, 100% load (1500 rpm, 500 Nm) - corresponds to hill climb / acceleration
 To collect the sample of emission particles in sufficient quantities for various toxicity tests, laboratory operations in each operating mode ran in different time intervals.

b) Sampling equipment
 atmospheric high-volume samplers (EcoTech 3000, 8\"x10\" filters)
 filter: PPTE filter (TX402H120W, Pall)

c) EOM extraction
 1. Extraction by dichloromethane
 2. Evaporation under a stream of nitrogen with 1,2-propanediol as a keeper
 3. Re-dissolution in dimethylsulfoxide (DMSO)

2. TOXICITY TESTS

1) Acellular assays (calf thymus DNA L1 rat liver microsomal 59 fraction)
 - incubation at 37°C for 24 hours
 - DNA adducts (by 32P-postlabelling)
 - 8-oxo-dG

2) Cellular assays (model of human lung epithelial cells - A 549 cells)
 a) Cytotoxicity – test WST-1 cell proliferation test (Roche)
 - doses of 1 and 10 dm³ of undiluted emissions were tested
 - incubation for 24 hours
 b) Genotoxicity – DNA adducts (by 32P-postlabelling)
 - micronucleus test
 c) Oxidative damage - oxidative damage of proteins: carbonyl groups
 - oxidative damage of lipids: 8-isoprostanene

RESULTS

1) ACCELLULAR ASSAYS (ct DNA)
 concentration 10 dm³ emissions/ml
 DNA adducts

 The results suggest that highest genotoxicity is induced by operating mode 1500/500 (deposit burn-off), particularly for diesel. For biodiesel genotoxicity substantially lower.

 No significant DNA oxidative damage was observed for all operating conditions for both diesel and biodiesel.

2) CELLULAR ASSAYS (HUMAN LUNG CELLS A549)
 a) Cytotoxicity

 Significant cytotoxicity was observed for higher dose of 10 dm³ of the undiluted emissions.
 All toxicity tests were performed at the subtoxic dose of 1 dm³.

 b) Genotoxicity
 concentration 1 dm³ emissions/ml culture medium

 Similar to the acellular test, highest genotoxicity (DNA adducts) was detected for engine operating mode 1500/500 (deposit burn-off). Higher DNA adducts were induced by diesel compared to biodiesel.
 No significant genotoxicity was observed by micronucleus test.

 c) Oxidative damage
 concentration 1 dm³ emissions/ml culture medium

 No significant induction of the oxidative damage of proteins and lipids in A549 was observed at any operating mode for diesel and biodiesel.

Acknowledgment: Funded by the EU LIFE+ program, project MEDETOX (LIFE10 ENV/CZ/651) and by the Czech Science Foundation, project BIOTOX (13-01438S).